Logo du site
  • English
  • Français
  • Se connecter
Logo du site
  • English
  • Français
  • Se connecter
  1. Accueil
  2. Université de Neuchâtel
  3. Publications
  4. FCA-Based Ontology Learning From Unstructured Textual Data
 
  • Details
Options
Vignette d'image

FCA-Based Ontology Learning From Unstructured Textual Data

Auteur(s)
Jabbari, Simin 
Institut du management de l'information 
Maison d'édition
: Springer
Date de parution
2018-12-20
Mots-clés
  • Formal Concept Analysis
  • Natural Language Processing
  • Ontology learning
  • Semantic knowledge extraction
  • Formal Concept Analys...

  • Natural Language Proc...

  • Ontology learning

  • Semantic knowledge ex...

Résumé
Ontologies have been frequently used for representing a domain knowledge. It has a lot of applications in semantic knowledge extraction. However, learning ontologies especially from unstructured data is a difficult yet an interesting challenge. In this paper, we introduce a pipeline for learning ontology from a text corpora in a semi-automated fashion using Natural Language Processing (NLP) and Formal Concept
Analysis (FCA). We apply our proposed method on a small given corpus that consists of some news documents in IT and pharmaceutical domain. We then discuss the potential applications of the proposed model and ideas on how to improve it even further.
Notes
, 2018
Nom de l'événement
Mining Intelligence and Knowledge Exploration (MIKE)
Lieu
Cluj - Napoca, Romania
Identifiants
https://libra.unine.ch/handle/123456789/26903
_
10.1007/978-3-030-05918-7_1
Autre version
https://link.springer.com/chapter/10.1007/978-3-030-05918-7_1
Type de publication
conference paper
Dossier(s) à télécharger
 main article: 2019-03-22_2289_7573.pdf (783.73 KB)
google-scholar
Présentation du portailGuide d'utilisationStratégie Open AccessDirective Open Access La recherche à l'UniNE Open Access ORCIDNouveautés

Service information scientifique & bibliothèques
Rue Emile-Argand 11
2000 Neuchâtel
contact.libra@unine.ch

Propulsé par DSpace, DSpace-CRIS & 4Science | v2022.02.00